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Networks composed by heterogeneous fractures whose local permeability is a binary correlated random field
are generated. The percolation and permeability properties of a single heterogeneous fracture are strongly
influenced by finite size effects when the correlation length is of the order of the fracture size. For fracture
networks, a mean-field approximation is derived which approximates well the macroscopic permeability while
an empirical formula is proposed for the percolation properties.
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I. INTRODUCTION

The determination of the macroscopic properties of frac-
ture networks has generated a considerable fundamental and
industrial interest since many applications are crucial for in-
dustries such as petroleum and waste storage.

Some general references can be given on this topic which
summarize the knowledge accumulated over the years from
different points of view such as �1–4�. Note that the solid
medium located in between the fractures is supposed to be
impermeable and that the classical double porosity approach
�5� is not applicable here.

In all these studies and to the best of our knowledge, the
fracture properties are assumed to be uniform and generally
constant for the whole network. It is only in a few contribu-
tions �see, for instance, �6�� that the fracture permeability
scales as a power law of the fracture lateral extent; however,
the permeability is uniform over each fracture. It should be
noted that early studies �7,8� pointed out the channelization
of the flow, i.e., its division into separate channels or equiva-
lently the existence of extended zones where the fracture
aperture is equal to zero. Surprisingly, this feature has never
been taken into account at the network level though it may
significantly influence the macroscopic properties.

Therefore, it is the major purpose of the present paper to
address this point. In order to simplify the physical situation,
the fracture local permeability will only take two values,
namely 0 and �o. The percolation threshold and the macro-
scopic permeability of networks of heterogeneous fractures
which may be locally open or closed are studied in a system-
atic way. Such a binary approximation would probably not
be valid for solute transport governed by a convection-

diffusion equation. In this latter situation, the small aperture
zones will induce long tails in the concentration plumes since
they correspond to low velocity zones; therefore, the macro-
scopic dispersion tensor is likely to be drastically influenced
by the aperture distribution. This approximation will be dis-
cussed further.

This paper is organized as follows. Section II describes
the generation of the fractures and their binary approxima-
tion. Then, it shows how fracture networks are generated and
it recalls briefly the meshing and the determination of the
flow and of the percolation properties. Section III is devoted
to the study of a single fracture and a detailed analysis of the
parameters which govern the equations is made. Section IV
contains the most important results of this paper since it is
devoted to the properties of three-dimensional networks, i.e.,
percolation and permeability.

This paper is ended by some concluding remarks.

II. GENERAL

The fracture networks considered in this work are made
up of plane polygonal fractures. These polygons may be
regular or not, but all their vertices Nv �regular or random�
are supposed to lie on a circumscribed circle whose radius R
provides a measure of the lateral extension of the fractures.
The local permeability ��x� of each fracture is supposed to
take two values, namely 0 and �o; ��x� is a correlated ran-
dom field as it will be seen below. Since ��x� corresponds to
a flow rate per unit fracture width, ��x� is homogeneous to
the cube of a length �2�.

A. Generation of fracture networks

The network generator has been detailed by �9�. Plane
polygonal fractures are inserted in a cell �0 of size L. Unless
otherwise stated, the following properties hold throughout
this paper. The fracture normal vectors n are randomly and
isotropically distributed over the unit sphere and the fracture
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centers obey a Poisson distribution. Nv and R are identical
for all the fractures in the network. Therefore, a network is
entirely characterized by a fracture shape �or equivalently
Nv�, the normalized cell size L /R, and the number of frac-
tures per unit volume �. Only two shapes are studied in this
paper, namely square when a single fracture is considered
�Sec. III� and hexagonal when addressing three-dimensional
�3D� networks �Sec. IV�.

� can be expressed by using the excluded volume Vex
introduced by Balberg et al. �10�. For two objects 1 and 2,
Vex is defined as the volume surrounding object 1 into which
the center of object 2 may not enter if overlap between 1 and
2 is to be avoided. For two equal convex polygons of area A
and perimeter P, Vex is equal to �2�

Vex = 1
2AP . �1�

The dimensionless fracture density �� is defined as the num-
ber of fractures per excluded volume

�� = Vex� . �2�

It is also equal to the number of intersections per fracture
�10�.

B. Triangulation and permeability distribution

In order to solve the flow equation, the fracture network
must be discretized. Since the fractures have polygonal
shapes, possibly random, and intersect randomly, the most
natural discretization is an unstructured triangulation. This
triangulation must obey a few a priori constraints. All the
original polygon vertices, intersection end points, and triple
points �intersections of fractures intersections� must coincide
with vertices of the triangular mesh; all the original polygon
borderlines and fracture intersections must coincide with tri-
angle edges; the triangulation of two intersecting fractures
must match along their intersection line �11�. The sides of the
triangles are of the order of �and generally smaller than� a
given discretization length �M.

In our previous contributions �11–13�, permeability was
constant in each fracture. The present paper goes one step
further by taking into account the fact that significant parts of
real fractures have a zero aperture and therefore a zero per-
meability. Such parts are called the contact zone.

The two surfaces of a fracture can be described by their
heights z=h��x ,y� above an arbitrary reference plane z, with
a mean separation bm. Usually, h� are assumed to be nor-
mally distributed random variables with a variance �h

2 �12�.
The aperture b of the fracture is the difference w=h+−h−

when it is non-negative,

b = �w , w�r� � 0,

0, w�r� � 0.
� �3�

When w is negative, the surfaces are considered to be in
contact, with h+=h−. As a consequence of the Gaussian char-
acter of the h+ and h−, the open fractional area 	 the average
aperture �b�o over the void fracture area can be expressed as

	 =
1

2
erf	−

bm�

2

 , �4a�

�b�o

�h
= bm� +

2


1/2 exp	−
bm�

2

4

 1

erfc	−
bm�

2

 , �4b�

where bm� =bm /�h.
The statistical properties of the fracture in the xy plane

can be characterized by the spatial covariance functions Ch�

of the fields h+ and h−. These two functions are assumed to
be identical, stationary, and isotropic. Hence, they reduce to
the function Ch�u� of the norm u of the lag u,

Ch�u� = ��h��r� − �h����h��r + u� − �h���� . �5�

The open surface corresponds to the zone b�0; equivalently,
the correlated Gaussian field h+−h− is equal to zero. There-
fore, the statistical generation of this open surface is equiva-
lent to the generation of a phase function Z�x� which is equal
to 1 when the surface is open and zero otherwise. This phase
function is statistically characterized by a probability � and a
correlation function RZ�u�,

� = Z�x�, RZ�u� =
�Z�x� − ���Z�x + u� − ��

�� − �2�
, �6a�

where u is the norm of the translation vector u. The overbar
denotes the spatial average. Z�x� is derived by thresholding a
Gaussian field Y�x� correlated by

RY�u� = e−u2/�c
2
, �6b�

where �c is the correlation length.
The present channel generation can now be precisely

compared to the one used by �7�. Actually, the general meth-
odology is exactly the same, but the generations differ by the
choice of the input functions. Reference �7� generated log-
normally distributed apertures, with exponentially decaying
spatial covariances while here Gaussian distributed apertures
with Gaussian decaying spatial covariances are generated
and thresholded.

Two remarks should be made on the resulting fractures.
First, it should be noticed that the choice of the distribution
function does not have any influence when the apertures are
later thresholded. Second, the choice of an exponential cova-
riance implies that the resulting fractures are self-affine
which is not the case for the Gaussian covariance; the expo-
nential and the Gaussian covariances represent the two ex-
tremes of the general form introduced by �15�. The Gaussian
covariance was preferred since it does not introduce any ad-
ditional complication due to the fractal character.

Various ways exist to choose a constant permeability �o
for the open zones of a fracture. A critical path analysis
�14,16� might be used to justify a constant permeability �o
for the open zones. A first physical approximation would
consist in taking the fracture aperture as a constant and equal
to �b�o. Then, �o can be estimated by the classical cubic law

�0 =
�b�o

3

12
�7�

or by a fraction of this value �2�. The validity of this approxi-
mation will be further discussed in Sec. IV A 2.
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It is assumed that � and �c are identical for all the frac-
tures of the networks which are generated. When all the frac-
tures of the network are triangulated, the discretization of
each fracture is made in two steps. For each fracture i, a field
Zi�x� is generated on a square grid Nc
Nc made of elemen-
tary squares of size a. Zi�x� is equal to 0 or 1 on each el-
ementary square. The size aNc of the square grid is usually
chosen equal to or larger than 4R.

The field Zi�x� is generated with periodic boundary con-
ditions on the square grid. This necessitates �see �17�� that
aNc is larger than 2�c. This is illustrated in Fig. 1�a�.

Once the field Zi�x� is generated, the fracture is dis-
cretized as follows. The center of the triangulated fracture of
size 2R is arbitrarily located at the center of the square grid
of size aNc. It should be emphasized that the size of the
fracture which is usually hexagonal is smaller than the size
of the square grid on which the field Zi�x� is generated. For
instance, the hexagonal fracture shown in Fig. 1�a� is located
at the center of the squares displayed in Figs. 1�c� and 1�d�.
When the gravity center of a triangle belongs to a square
with Zi=1, the permeability of the corresponding triangle is
equal to �o, and zero otherwise. Note that the fracture has
been initially divided into four equal squares; the thick lines
limiting these squares could correspond to intersections with
other fractures of the network.

To summarize, this construction mode introduces five
lengths, namely two physical lengths R and �c, and three
artificial lengths �M, a, and aNc. a is generally taken equal to
�M in order that the dimensions of the squares and the tri-
angles are comparable.

Figure 2 illustrates the influence of the triangular grid, of
� and of the correlation length �c on the local permeability

field in square fractures. Of course, the results look very
much alike the porous media generated by the same tech-
nique �17�. The two parameters � and �c have exactly the
same influence as on porous media. It is also clear that the
exact nature of the triangular grid made of equilateral tri-
angles �for the hexagonal lattices� and of triangles of arbi-
trary shapes �for the unstructured lattices� is very limited.

The permeability of each fracture of the network can be
discretized by the same method, once it is triangulated. Of
course, the field Z�x� is generated independently for each
fracture.

The qualitative influence of � and of � is shown in Fig. 3.
Two fractures may intersect, but in order that fluid can flow
from one to another, it is necessary that the open zones of
each fracture overlap in some sense along the intersections;
otherwise, the two fractures are not connected when flow is
considered. More precisely, consider an intersection between
two fractures. This intersection is divided into segments
which are the sides of triangles contained in one of the two
intersecting fractures. Fluid can flow from one fracture to the
other if two triangles with permeability �o belonging to the
two fractures have at least one node in common. Of course,
this is not sufficient in the sense that these two triangles
should also belong to the percolating cluster.

Therefore, when the network of fractures of constant per-
meability �o percolates for a given fracture density �, one
can determine the minimal value �c for which the network of
heterogeneous fractures percolates; �c is expected to be a
decreasing function of �. This phenomenon and its conse-
quences are detailed in Sec. IV B 2.

2R

caN

cl

a

c

b

d

FIG. 1. Discretization of a fracture. �a� The length scales in-
volved in the generation and discretization of a fracture. �b� A tri-
angulated grid; �c� the field Z�x� on the square grid; �d� the corre-
sponding permeability distribution on the unstructured lattice. Color
code for squares and triangles, white �Z�x�=1�, black �Z�x�=0�.
The hexagonal fracture of size 2R shown in �a� is located at the
center of the square of size aNc in �c� and �d�.

FIG. 2. A square fracture discretized on a hexagonal lattice with
�=0.2 �a�, 0.5 �b�, and 0.8 �c� and discretized on an unstructured
triangle lattice in �d�, �e�, and �f�, respectively; �c=0.177L2 where
L2 is the fracture side. For the same values of � and �c=0.354L2,
fractures �g�, �h�, and �i� are discretized on an unstructured lattice.
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The previous developments apply to fractures which be-
long to a network. The discretization of a single fracture is
given in Sec. III.

C. Flow equations

Typically, flow is determined in cubic unit cells of size L
such as the ones displayed in Fig. 3. The solid matrix con-
taining the fractures is assumed to be impermeable. On a
local scale characterized by a typical aperture �b�0 �cf. �9��,
the flow of a Newtonian fluid at low Reynolds number
within a fracture is governed by the Stokes equation. If �b�0
is assumed to be much smaller than the typical lateral extent

2R of the fracture, the flow on scales intermediate between
b0 and 2R is governed by the Darcy equation

q� = −
1

��
����p�, �8�

where q� is the local flow rate per unit width �L2T−1�, �� the
fluid viscosity, ��p� the pressure gradient, and ���L3� is the
fracture conductivity. All of the dimensional quantities re-
lated to fluid and flow are denoted by a prime. Mass conser-
vation implies

FIG. 3. Influence of �� and � on fracture networks. �c /R=0.5 and L /R=5. Each line corresponds to a given value of ��; from top to
bottom, ��=1.5,2.3,5.6. Each column corresponds to a given value of �; from left to right, �=0.2,0.5,0.8.
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�s� · q� = 0, �9�

where �s� is the two-dimensional gradient operator in the
mean fracture plane.

The boundary conditions which supplement Eqs. �8� and
�9� are of three types. First, the flow normal to the fracture
external boundaries should vanish. Second, at fracture inter-
sections, pressure should be equal and fluxes conserved.
Third, periodic boundary conditions are applied on the local
flux q� and for ��p�.

In addition, the driving force of the flow is an overall
pressure gradient ��p� which can be expressed as

��p� =
1

�0
�

��0

p�ds�. �10�

The seepage velocity v� can be evaluated as

v� =
1

�0
�

�f

v�d�� =
1

�0
�

Sf

q�ds�, �11�

where � f is the interstitial volume of the fractures and Sf their
projection on their mean planes. The flux is related to the
pressure gradient by Darcy’s law �2�

v� = −
1

��
K� · ��p�. �12�

K� is the permeability tensor �L2� to be determined from
Eqs. �11� and �12�, once Eqs. �8� and �9� are solved. The
dimensionless permeability is defined as

K =
R

�0
K�. �13�

Since the fields Zi and the fracture distribution in space are
isotropic, K is reduced to a spherical tensor KI where K is
the scalar permeability and I is the unit tensor.

The discretization and resolution of �9� can be summa-
rized as follows. Equation �9� is integrated over nonoverlap-
ping domains �m that surround each node m of the triangles.
Denote by Tm�t�, t=1, . . . ,nm the nm triangles whose one
node is m. If the node belongs to the intersection of two or
three fractures, �m is simply the union of the two or three
domains obtained in each fracture as indicated above. Fi-
nally, by a systematic use of the divergence theorem, a dis-
cretized conservation equation is obtained around each node
m. This equation involves pm and all the pressures at the
nodes of the triangles �Tm�t� , t=1, . . . ,nm
. These equations
for all the nodes can be summarized by the linear system

A · p = B , �14�

where p is the vector whose components are the pressures at
all the nodes, B a vector which corresponds to the driving
force, i.e., to the macroscopic pressure gradient. It is easily
shown that the matrix A depends only on the geometry of the
triangles and that it is symmetric. This matrix is also large
and sparse, but shows no organization since the triangular
grid is unstructured. Therefore, the most efficient storage

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

σ

a

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

σ

b

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

σ

c

FIG. 4. The average macroscopic dimensionless permeability �̄
as a function of � for a single fracture discretized by unstructured
triangles. �c /L2=0.177. �a� Influence of �M /L2; data are for
�M /L2=0.088 ���, 0.044 ���, 0.022 ���, 0.011 ���, 0.0055 ���. �b�
Influence of a /�M; data are for �M /L2=0.022; a /�M =0.5 ���, 1
���, 2 ���. �c� Influence of �c /L2; data are for �c /L2=0 ���, 0.01
���, 0.05 ���, 0.0885 ���, 0.177 ���, 0.354 ���, 0.71 ���, 1 ���.
�M /L2=0.0055; the broken line is the limit �̄=� for �c /L2→�; the
solid line is the fit by �17�.
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FIG. 5. The percolation probability � f as a function of � for a
single fracture discretized by unstructured triangles; � f is derived
from the macroscopic permeability. Conventions are the same as in
Fig. 4�a�. �c /L2=0.177. �a� Influence of �M /L2. �b� Influence of
a /�M for �M /L2=0.011. �c� Comparison of the percolation prob-
abilities �g ��� and � f ���; �M =0.044L2. �d� �c as a function of
�M /L2 derived from geometry ��� and from flow ��� for a single
fracture meshed by unstructured triangles.
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mode is to record the coefficients of the pressure pm at node
m in the discretized conservation equation for each triangle
of the network. The balance equation for each grid point is
built by summing the contributions from all its incident tri-
angles. The resulting system is solved by a classical conju-
gate gradient technique.

D. Percolation

Since one of the purposes of this paper is to determine the
percolation threshold �c���� of the fracture network as a
function of the density ��, it is important to detail how the
percolation of a given fracture or of a given network is cal-
culated.

There are many ways which can be used in order to de-
termine the percolation properties of a set, one of them being
the Hoshen-Kopelman algorithm �18�. Here, two ways based
on numerical tools which are available are used to study the
percolation property, either by purely geometric consider-
ations or by solving the flow equation.

The first method can be explained for a single fracture
since it is easily extended to 3D. The easiest way is to intro-
duce the adjacency matrix A of the permeable triangles. The
matrix element Aij is equal to 1 if the two triangles i and j
have at least one common node. The size of this matrix is
Nt
Nt, where Nt is the total number of triangles in the frac-
ture. The percolation of a single fracture from its left-hand

side x=0 to its right-hand side x=L2 can be studied as fol-
lows. Introduce the vector T0 �with Nt lines� whose elements
are 1 for permeable triangles which have at least one node
with x=0, and 0 otherwise. Then, it is an easy matter to
realize that the triangles connected to this set correspond to
the nonzero elements of the vector T1=A ·T0. This multipli-
cation can be repeated until the resulting vector Tn is con-
stant; more precisely, at each step Tm+1=A ·Tm is replaced
by a vector composed of 0 and 1 only. Then, one can check
if Tn contains a permeable triangle with at least one node
with x=L2. If it does, the network percolates. Obviously, this
method is straightforward to implement and not costly from
a numerical point of view.

The calculations are done for Nr independent realizations
of the network for each value of �. The value of Nr in two
dimensions �2D� is 100, and in 3D is 50. The average of the
Nr realizations provides the percolation probability �g��� as
a function of the probability �.

The second method to obtain the percolation probability
function is to solve the flow equations. The fracture perco-
lates when K is not equal to 0. Again this calculation is
performed on Nr realizations. The time necessary to solve the
flow equation is remarkably low and it is smaller than the
time needed for the geometrical method. The percolation
probability � f��� is derived from the flow calculation by
generating as before Nr independent realizations of the net-
work for each value of �.

In both cases, the percolation probability ����� ��=g , f�
is fitted by an error function of the form

����� =
1

�2

�

−�

� 1

��

exp	−
�� − ��c�2

2��
2 
d�, � = g, f ,

�15�

where ��c is the critical threshold and �� is the width of the
transition region of �����.

III. RESULTS FOR A SINGLE FRACTURE

In this section, percolation and flow are studied in a single
square fracture such as the ones displayed in Fig. 2. In con-
trast with the hexagonal fractures generated for networks, the
single fracture is square with periodic boundary conditions.
The side L2 of the fracture is equal to the side of the unit cell.
The fracture is triangulated once for all since it does not
intersect any other fracture. The field Z�x� which verifies
�6a� and �6b� is generated and the permeability of each tri-
angle is determined according to the value of Z�x� at its
center of gravity.

Since the lengths necessary to describe the fracture are
�M, a, �c, and L2, the average macroscopic dimensionless
permeability �̄ of a single fracture averaged over Nr indepen-
dent realizations depends on four parameters

�̄ =
1

Nr
�
i=1

Nr �i

�0
= �̄��,�c/L2,�M/L2,a/�M� , �16a�

where �i is the macroscopic permeability of the ith fracture.
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FIG. 6. �a� The percolation probability � f as a function of � for
a single fracture discretized by unstructured triangles for various
values of �c /L2. Conventions are the same as in Fig. 4�c�. The
broken line is the limit � f =� for �c /L2→�. �b� The percolation
probability � f as a function of � for a single fracture discretized by
unstructured triangles with �c /L2=0.177; data are for �M /L2

=0.088 ���, 0.044 ���, 0.022 ���, 0.011 ���, 0.0055 ���. �c� �c as
a function of �M /L2 for a single fracture discretized by unstructured
triangles for various values of �c /L2. Data are for �c /L2=0 ���,
0.0885 ���, 0.177 ���, 0.354 ���, 0.71 ���, 1 ���. �d� The extrapo-
lated percolation threshold �c0 for a single fracture discretized by
unstructured triangles as a function of �c /L2.
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The percolation threshold �c can be written as

�c��c/L2,�M/L2,a/�M� . �16b�

Of course, �M /L2 and a /�M are artificial parameters which
should disappear from the final results.

In the following, the square single fracture is triangulated
by unstructured triangles using the general advancing front
technique.

A. Permeability

First, in order to check the influence of �M /L2 and a /�M,
calculations are done for various values of these parameters.
The permeability distribution is correlated by the Gaussian
field �6b� with �c /L2=0.177. Periodic boundary conditions
are applied along both x and y directions, but the average
pressure gradient is parallel to the x axis.

Since percolation properties are often derived from flow
calculations, it might be easier to start with the data related
to �̄.

The influence of the artificial parameters �M /L2 and a /�M
on �̄ is summarized in Fig. 4. Figure 4�a� displays the mac-
roscopic permeability �̄ averaged over 100 independent re-
alizations as a function of � for a single fracture discretized
by unstructured triangles for different values of �M /L2.
When �M /L2 is equal to 0.088, 0.044, 0.022, 0.011, and
0.0055, the number of triangles in the fracture is equal to
384, 1464, 5160, 20248, and 79416, respectively. As ex-
pected, �̄ tends towards a limit for small values of �M /L2.
The differences between the various values of �M /L2 are
very small when �M /L2�0.022.

For these values of �M /L2, systematic calculations were
performed for three values of a /�M =0.5, 1, and 2 in order to
estimate the influence of this parameter. The results obtained
for �M /L2=0.022 are displayed in Fig. 4�b�; this corresponds
to the largest influence of a /�M and it is seen to be very
limited.

Systematic calculations were performed for �M /L2
=0.0055 and are presented in Fig. 4�c� for various values of
the correlation length �c. �̄�� ,�c /L2� is varying between two
known limits. When �c /L2 is large, the fracture permeability
is equal to �0 with a probability �, and 0 otherwise; there-
fore, �̄ is equal to �. When �c /L2 is small �and even 0�, this
corresponds to the classical site percolation where the values
of the triangles are independent from one another. This graph
is interesting since the evolution of �̄ is nonuniform with
�c /L2 for a given value of �. When �c /L2 decreases from 1 to
approximately 0.0885, a minimal curve is obtained; when
�c /L2 is further decreased, �̄ increases. For �c /L2=0, a linear
relation is obtained which can be fitted by

�̄��,0� � 1.814� − 0.814. �17�

The agreement with the numerical data is excellent, except
of course close to percolation.

In order to make sure that this nonuniform behavior is not
due to the triangular mesh, similar calculations were made
on the classical square mesh which was binarized as detailed
in Sec. II B; similar results were obtained. A last check was
performed for �c /L2=0; instead of using the machinery de-
scribed in Sec. II B, a classical site percolation was devised
with a random number generator; again similar results were
obtained.

Another remark should be made. For an infinite fracture,
the correlation length �c does not play any role as soon as it
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various values of � with �M /R extrapolated to 0. In �a� and �b�, data
are for �=1 ���, 0.8 ���, 0.6 ���, 0.4 ���, and 0.2 ���. �c� and �d�,
K̄ as a function of a /�M �c� and L /R �d�. �c� Data are for a /�M

=0.5�¯�, 1�—� and 2�- - -�; �=1 ���, 0.8 ���, 0.6 ���, 0.4 ���
and 0.2 ���. �M /R= 1

8 , L /R=5. �d� Data are for �M /R= 1
4 ; �=1 ���,

0.8 ���, 0.6 ���, 0.4 ���, and 0.2 ���; L /R=5 �¯�, 8�- - -�, and
10�—�.

3 5 7 9 11
0

0.5

1

1.5

ρ′

K

a 3 5 7 9 11
0

0.2

0.4

0.6

0.8

1

ρ′

K

b

3 5 7 9 11
0

0.1

0.2

0.3

0.4

0.5

ρ′

K

c 3 5 7 9 11
0

0.05

0.1

0.15

ρ′

K

d

FIG. 8. Influence of the ratio �c /R on the macroscopic perme-

ability K̄. Data are for �=1 �a�, 0.8 �b�, 0.6 �c�, and 0.4 �d�; �c /R
=0 ���, 1

8 ���, 1
2 ���, 1 ���, 3

2 �	�, 2 �
�, 5 �
�, 10 ���. �M /R
= 1

8 .

PERCOLATION AND PERMEABILITY OF NETWORKS OF… PHYSICAL REVIEW E 79, 036302 �2009�

036302-7



is not zero. Of course, the artificial ratio �c /a describes the
discretization, but it should be chosen large enough in order
that the discretization effects are negligible.

This discussion can be concluded by noting that the varia-
tions displayed in Fig. 4 correspond to the so-called finite-
size effects �19� and are usually eliminated by finite-size
scaling. Here, these effects correspond to real physical ingre-
dients since �c may well be of the order of magnitude of the
fracture size.

B. Percolation

Let us now turn to the percolation properties. As ex-
plained in Sec. II D, the percolation probability function can
be derived from flow calculations. In Fig. 5�a�, the percola-
tion probability � f is shown as a function of � for a single

fracture discretized by unstructured triangles for various val-
ues of �M /L2. The simulated data are fitted by the error func-
tion �15�. The resulting values for �c and � are given in
Table I. Again it is clear that �c tends towards a limit when
�M /L2 tends towards 0.

The influence of the second artificial parameter a /�M was
determined for �M /L2=0.022, 0.011, and 0.0055. As it was
noticed in the preceding section for permeability, the influ-
ence of a /�M is an increasing function of �M /L2. Only the
intermediate case is displayed in Fig. 5�b�; it is seen that
again the role of this artificial parameter is very limited.

The percolation threshold was also derived by the geo-
metrical method. In this case, nonperiodic boundary condi-
tions are used. The corresponding percolation probability
function �g is very similar to � f as it can be seen in Fig.
5�c�. The resulting values for �c and � are given in Table I.

Since the computational times increase with decreasing
�M, the smallest value used for percolation is �M /L2=0.022.
�g and � f are practically identical for small values of �M.

These preliminary results on the percolation properties
can be summarized by saying that the two techniques give
very close results and that the role of a /�M is decreasing
when �M /L2 decreases.

In order to eliminate the artificial parameter �M, the data
should be extrapolated for �M /L2=0. This extrapolation is
illustrated in Fig. 5�d� and the extrapolated values �co are
given in Table I. The values of �co using � f and �g are
0.4918 and 0.5011, respectively; therefore, these values are
very close which gives some confidence in the derivation of
the threshold by means of flow calculations.

Once these methodological preliminaries are made, the
role of the parameter �c /L2 can be analyzed. It is interesting
to provide the probability curves � f�� ,�c /L2� in Fig. 6�a�.
When the correlation length increases, � f becomes less steep
around the percolation threshold. In the limit �c /L2→�, � f
is equal to � for the same reasons as for �̄ �see Fig. 4�c��.
This progressive smoothing of � f�� ,�c /L2� around �c is
again analogous to the well-known finite-size effect �19�.
Close to the percolation threshold, the cluster size is diverg-
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TABLE I. �c and � as functions of �M /L in a single fracture
triangulated by an unstructured mesh derived from flow and geom-
etry calculations. �c /L=0.177.

�M

L2
�c �

Flow 0.088 0.4384 0.1261

0.044 0.4623 0.1056

0.022 0.4858 0.1369

0.011 0.4828 0.1077

0.0055 0.4863 0.1140

0 0.4918

Geometry 0.088 0.4466 0.1561

0.044 0.4716 0.1136

0.022 0.4886 0.1313

0 0.5011
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ing and becomes of the same order of magnitude as the size
of the cell. More precisely, the basic dimension of the ele-
ments is �c; in the limit �c=0, the curve � f��� is relatively
steep since �M /L2 is small; when �c is comparable to the
fracture size, the curve becomes smooth.

The percolation probability � f was systematically deter-
mined as a function of � for �M /L2=0.088, 0.044, 0.022,
0.011, and 0.0055 for each value of �c /L2. The values of
�c /L2 were 0.0885, 0.177, 0.354, 0.71, and 1; an example is
displayed in Fig. 6�b�. When these curves are fitted by �15�,
�c is obtained as a function of �M /L2 for each ratio �c /L2; the
results are shown in Fig. 6�c�; these curves can be extrapo-
lated for �M /L2=0 and the corresponding value �c0 of the
threshold is obtained for each ratio �c /L2. The extrapolated
percolation threshold �c0 is displayed as a function of �c /L2
in Fig. 6�d�; except for �c /L2=0, it is very close to 0.5.

The value �c0=0.5 is indeed expected for continuous cor-
related two-dimensional binary media, since percolation of
one phase along a given direction prevents the existence of a
connected path in the other phase along the transverse direc-
tion. Symmetry imposes that �c=1 /2. Moreover, the perco-
lation threshold does not depend on the correlation length
since a change in �c corresponds simply to a scale change.
These arguments apply for any nonpathological correlation
function �e.g., differentiable�, but they may fail in a dis-
cretized representation. For instance, it is possible that two
connected paths through the two phases intersect at a node of
a triangular mesh and this may decrease �c. This effect is
observed here for coarse meshes, but as expected, it becomes
negligible when the discretization step �M becomes small
compared to the correlation length �c. More details on per-
colation thresholds in two-dimensional correlated media can
be found in �20�.

Finally, some of these calculations were repeated for a
single fracture discretized by equilateral triangles. The re-
sults were very similar to the ones obtained for unstructured
triangles.

IV. RESULTS FOR FRACTURE NETWORKS

In this section, 3D networks made up of monodisperse
hexagonal fractures are studied. When compared to the two-

dimensional permeability �16a�, the macroscopic dimension-
less three-dimensional permeability K is expected to depend
on two additional parameters, namely the fracture density ��
and the ratio L /R between the cell size L and the fracture
radius R; this is summarized by the formula

K =
K�R

�
= K���,�,�c/R,a/�M,L/R,�M/R� . �18a�

Only the first three parameters are physically meaningful.
The last three ones are artificial and are introduced for the
numerical calculations only. The same comments can be
made about percolation and the percolation threshold �c is
written as �cf. �16b��

�c���,�c/R,�M/R,L/R,a/�M� . �18b�

Since the percolation properties are derived from the flow
properties, we start by presenting the results relative to per-
meability.
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A. Permeability

It is necessary to note that this study will not address the
properties of permeability close to the percolation threshold.

Moreover, the mean value K̄ of the permeability over 50
configurations is always considered in this Subsection.

1. Influence of the artificial parameters

Let us start with the artificial parameters �M /R, a /�M, and
L /R. It will be seen that the influence of these parameters is
coupled in the sense that the influence of one of them may
depend on the influence of the others.

The first important parameter is the ratio �M /R which
compares the mesh size to the fracture size. The two other
parameters a /�M and L /R are equal to 1 and 5, respectively.
An intermediate value 0.5 was given to the correlation length
�c /R.

K̄ is displayed in Fig. 7�a� as a function of �� for a fixed

value of � and for three values of �M /R. K̄ is an increasing
function of �M /R; note that the differences between �M /R
=1 /8 and 1 /16 for ��=11 is always of the order of 0.05.

Therefore, these data need to be extrapolated for �M /R
=0. The corresponding curves in arithmetic plots are shown
in Fig. 7�b�. This figure corresponds to the representation of
the data which could be possibly used for practical applica-
tions; the curves could be used as master curves to predict
the network permeability when the two parameters �� and �

are known. K̄ is an increasing function of �� and � as it is
obvious intuitively.

Let us now consider the influence of the second artificial
parameter a /�M which has been briefly studied and the re-
sults are illustrated in Fig. 7�c�. As for the two-dimensional
case �cf. Fig. 4�b��, its influence is seen to be very limited.

The last artificial parameter is the ratio L /R. Three values
were selected: L /R=5, 8, and 10. Moreover, for each of
these values, �M /R was equal to 1 /4 and 1 /8. It is interesting
to note that the role of L /R decreases with �M /R �and re-
versely�; this provides an example of the coupled influence
of the artificial parameters which was previously mentioned.
The data for �M /R=1 /4 are illustrated in Fig. 7�d�. They
confirm that far from the percolation threshold the influence
of the cell size L on K is very limited.

This preliminary study of the artificial parameters leads to
the following conclusions. The data need to be extrapolated
to �M /R=0; the influence of L /R on the permeability is suf-
ficiently small and the calculations can be limited to L /R
=5.

2. Influence of the physical parameters

Let us return to the study of the physical parameters. The
roles of � and �� have already been sketched in Fig. 7�b�.

The last important parameter is the ratio �c /R which com-
pares the correlation length to the fracture size. The limit
�c /R=0 corresponds to site percolation where the permeabil-
ity �0 of each triangle is chosen independently of its neigh-
bors. The other limit �c /R=� is simpler; each fracture has a
uniform permeability which is equal either to 0 or �0; there-

fore, K̄ is expected to depend only on the product ��� in this
limit.

A complete set of data is given in Fig. 8. These data
which represent a significant amount of numerical calcula-
tions have been restricted to an intermediate grid size

�M /R=1 /8. The influence of �c /R on K̄ is relatively limited
and it diminishes when � increases. In the worst case, for

�=0.4, K̄ for �c /R=� is less than 3 times larger than for
�c /R=0. It should be noticed that the limiting case �c /R=0
is somewhat singular in agreement with the results for a
single fracture �see Fig. 4�c� and the related discussion�.

The limit �c /R=� can be better understood by plotting all
the data as functions of ��� in Fig. 9. The results are quite
remarkable since they are always very close to the classical
curve obtained for �=1. A closer look shows that the devia-
tions from this curve are maximal for intermediate values of
�c /R. In other words, it is only when �c is of the order of R
that the deviations are important.

It might be the right place to detail the application of a
mean field approximation �21� to the determination of the

macroscopic permeability K̄. In this type of approximation,
each fracture is replaced by a fracture whose permeability is
�̄�� ,�c /R� as given for instance by Fig. 4�c�. The macro-
scopic dimensionless permeability of a network with frac-
tures of permeability �0 is given by

K0 =
�0

R
f���� . �19a�

The dimensionless permeability f���� of a monodisperse net-
work with fractures of a constant permeability can be ap-
proximated by the power law based on numerical results
given by �11�

f���� � 0.0455��� − �c��
1.57. �19b�
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Therefore, the mean-field approximation for a network
with fractures of permeability �̄ is simply

K =
RK�

�0
= �̄��,�c/R�f���� . �20�

This approximation is verified in Fig. 10 for the extrapolated
values of permeability obtained with �c /R=0.5. Therefore,
even in this intermediate range of values for �c /L, a very
good agreement with the full numerical results is obtained as
soon as � is large enough.

This approximation is exact in the limit �c /R=�. One can
show that it also holds for �c /R=0. The curve obtained for a
single fracture in this limit in Fig. 4�c� can be approximated
by �17�. This last expression can be combined with �20�. It is
compared with the full numerical data in Fig. 9�a�. The
agreement is seen to be very good for the range of param-
eters which were studied. Again the mean-field approxima-
tion is well justified in this limit at least far from the perco-
lation threshold since the fracture size R is large when
compared to the size �M of the elements.

Since the two limit cases �c /R=0 and � obey the mean-
field approximation, the agreement between the numerical
data and this approximation as a function of ��� remains
relatively good for all values of �c /R.

The success of this mean-field approximation is quite re-
markable since the binarization of permeability creates com-
plex channels which must be present along the same segment
at a fracture intersection in order to connect the two frac-
tures.

Therefore, the extension of the classical laws to the
present case is a very interesting feature from theoretical and
practical points of view. Moreover, because of the success of
this mean-field approximation, it is anticipated that a con-
tinuous distribution of permeabilities inside the fractures will
not yield a significantly different result.

B. Percolation

Percolation properties have been exclusively studied by
solving the flow equations since this method is much more
efficient than the geometrical algorithm as noticed in Sec.
II D.

1. Influence of the artificial parameters

Again let us start with the artificial parameters a /�M,
�M /R, and L /R. a /�M was shown in Sec. III B to have a very
limited influence on the percolation properties of a single
fracture; therefore, its influence on the percolation properties
of a fracture network is expected to be also very limited.

The second important parameter is the ratio �M /R whose
influence is illustrated in Fig. 11. the probabilities in �a,b,c�
are fitted by the error function �15� in order to get the value
of the percolation threshold �c and the standard deviation ��.

Of course, �c depends on �M /R as shown by Fig. 11�d�.
Therefore, the second step consists in the extrapolation of the
data for �M /R=0 in order to obtain �co. These calculations
were repeated for several values of ��; the dependence of �c
on �M /R does not seem to depend on �� in the sense that all
the curves are parallel in Fig. 11�d�. The results relative to �c
and �co are gathered in Table II.

The third parameter is the ratio L /R which has only been
briefly studied. Calculations were limited to L /R=5 and 10
with various values of �M /R. The differences were always
limited to 5%.

2. Influence of the physical parameters

Let us study now the two physical parameters �� and
�c /R.

It is important to stress the fact that �c depends on ��.
This can be easily understood since percolation of a network
depends on two conditions. First, the fracture network should
percolate, i.e., ����c��2.3. Second, the zones where the lo-
cal permeability is not zero in two intersecting fractures
should be in contact one with another. This second condition
is more often met in a network when �� increases. Therefore,
�c should be a decreasing function of ��; this feature is in-
deed observed in Fig. 11�e�. The same is also true for the
extrapolated values �co.

�co should also depend on the second physical parameter
�c /R. The study of this dependence necessitates to restart the
numerical calculations for various values of this parameter;
networks are generated with various densities ��, meshed
with various values of �M /R; the resulting data are extrapo-
lated to zero. This important numerical effort yields the func-
tion

�co = �co���,�c/R� . �21�

TABLE II. Values of ��, �c, and � for various �M /R in fracture networks.

��

�M

R
=

1

4

�M

R
=

1

8

�M

R
=

1

16 �M

R
=0

�co�c � �c � �c �

3.1 0.5429 0.1256 0.5818 0.1108 0.6230 0.1237 0.6425

3.7 0.4779 0.1097 0.5081 0.1037 0.5463 0.0817 0.5614

5.6 0.3644 0.4460 0.4032 0.0484 0.4325 0.0543 0.4519

7.5 0.2912 0.0379 0.3389 0.0420 0.3801 0.0419 0.4040

11.2 0.2340 0.0260 0.2629 0.0180 0.3117 0.0196 0.3262
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The limit �c /R=� is known since the network is composed
of conducting fractures with a spatial density ���; therefore,
the former result of �9� can be used to derive the expression

�co = 2.3��−1 for �c/R = � . �22�

In addition to this known limit, two other values were
selected for �c /R, namely 0 and 1. The major data and the
intermediate steps are the same as for Fig. 11. All these data
are gathered and displayed in a slightly different way in Fig.
12. As already noticed, the potential user will tend to use the
function defined by �21�. A tentative semiempirical law
which has no theoretical background can be proposed in or-
der to synthetize the data

�c = ����, �23�

where � and � are parameters which depend on �c /R. When
�22� is used, � and � can be expressed as

� = − 1 + 0.68e−0.81�lc/R�, �24a�

� = 2.3 − 1.65e−0.82�lc/R�. �24b�

The fits are shown in Fig. 12�d�.
The predictions of �23� where � and � are expressed by

�24� are compared to the numerical data in Fig. 12�c�. The
agreement between the fits and the numerical data is seen to
be good.

V. CONCLUDING REMARKS

The macroscopic properties of networks of heterogeneous
fractures were systematically studied as functions of the net-
work density, of the probability � and of the correlation
length which characterizes the heterogeneities in the frac-
tures.

Master curves could be derived for the network macro-
scopic permeability. It was shown that a mean-field approxi-
mation where each fracture is replaced by a fracture with the
average permeability corresponding to � yields a first good
approximation, at least far from the percolation threshold.

The threshold of the probability � is shown to depend on
the fracture density and on the correlation length. An empiri-
cal relation is given to describe the variations of the thresh-
old as a function of these two variables.

This study can be extended in many ways. First, there is
some theoretical interest to study the phenomena close to the
percolation threshold in a detailed way.

Second, the distribution of the local permeability inside
the fractures could be continuous instead of being binary.
This extension is very important for practical purposes
though the percolation properties will not be modified. It
should be very interesting to check the validity of the mean-
field approximation for various permeability distributions.
The influence of these distributions on the macroscopic dis-
persion tensor will also be of a high interest.
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